next up previous
Next: Transformation from Hodograph to Up: Mathematical Description of the Previous: General Hodograph Equation

Perfect Gas Hodograph Equation

To evaluate M, we assume a perfect gas. We define a parameter $\tau$ as:

 \begin{displaymath}\tau\equiv\frac{\gamma-1}2\frac{V^2}{a_0}
\end{displaymath} (15)

Using the perfect gas relationship

\begin{displaymath}a^2=a_0^2-\frac{\gamma-1}2V^2
\end{displaymath} (16)

we get $\tau$ in terms of M:

 \begin{displaymath}\tau=\frac{(\gamma-1)M^2/2}{1+(\gamma-1)M^2/2}
\end{displaymath} (17)

The parameter $\tau$ is somewhat like the characteristic Mach number; it varies from zero at M=0 to one at $M=\infty$. At Mach one, $\tau=(\gamma-1)/(\gamma-1)$. This value is written henceforth as $\tau^*$.

Solving Equation 17 for M2 gives

 \begin{displaymath}M^2=\frac2{\gamma-1}\frac\tau{1-\tau}
\end{displaymath} (18)

And from Equation 15 we get

\begin{displaymath}\frac{\partial}{\partial V}
=\frac{2\tau}V\frac{\partial}{\partial\tau}
\end{displaymath} (19)


 \begin{displaymath}\frac{\partial^2}{\partial V^2}
=\frac{\gamma-1}{a_0^2}\left(...
...}{\partial\tau}
+2\tau\frac{\partial^2}{\partial\tau^2}\right)
\end{displaymath} (20)

Using Equations 18-20, Equation 14 transforms to:

 \begin{displaymath}\tau^2(1-\tau)\psi_{\tau\tau}
+\tau\left(1+\frac{2-\gamma}{\g...
...+\frac14\left(1-\frac\tau{\tau^*}\right)\psi_{\theta\theta}
=0
\end{displaymath} (21)


next up previous
Next: Transformation from Hodograph to Up: Mathematical Description of the Previous: General Hodograph Equation
Carl Banks
1999-05-14